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A FOURTH ORDER ACCURATE EMBEDDED BOUNDARY

METHOD FOR THE WAVE EQUATION

DANIEL APPELÖ† AND N. ANDERS PETERSSON§¶

Abstract. A fourth order accurate embedded boundary method for the scalar wave equation
with Dirichlet or Neumann boundary conditions is described. The method is based on a compact
Pade-type discretization of spatial derivatives together with a Taylor series method (modified equa-
tion) in time. A novel approach for enforcing boundary conditions is introduced which uses interior
boundary points instead of exterior ghost points. This technique removes the small-cell stiffness
problem for both Dirichlet and Neumann boundary conditions, is more accurate and robust than
previous methods based on exterior ghost points, and guarantees that the solution is single-valued
when slender bodies are treated. Numerical experiments are presented to illustrate the stability and
accuracy of the method as well as its application to problems with complex geometries.

Key words. wave equation, embedded boundary, finite differences
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1. Introduction. Finite difference discretizations with the boundary embed-
ded in a Cartesian grid (EB-methods) provide an alternative to body-fitted overset,
multi-block, or unstructured grid methods for solving partial differential equations in
complex geometries. The geometry in an EB-method is represented by curves in 2D
and surfaces in 3D, rather than by surface or volumetric grids, which significantly
reduces storage requirements. For most EB-methods, the geometry only needs to be
accessed while configuring the boundary condition stencils, which can be performed
during a preprocessing stage. The data-structure for the boundary condition sten-
cils is simple and all information can be stored in regular arrays. The configuration
requires only local operations, making the method well-suited for parallel implemen-
tation. Consequently, no costly parallel grid generation is needed, as the Cartesian
grid is trivially generated.

For wave propagation problems, EB-methods generally have small dispersion er-
rors due to the perfect regularity of the Cartesian grid. They are also highly efficient
in terms of floating point operations and memory use per degree of freedom. Despite
these attractive features relatively few high-order accurate EB-methods for wave equa-
tions have been documented in the literature.

This paper presents a fourth-order accurate EB-method for the wave equation
based on compact (Pade-type) finite-difference approximations of spatial derivatives
combined with a modified equation approach for the time-discretization. The method
imposes boundary conditions by assigning solution values to boundary points inside
the boundary via interpolation, rather than using extrapolation to assign solution
values to ghost points outside the boundary as was done in [8, 9, 10]. This subtle yet
crucial difference improves previous second-order accurate approaches by removing
the small-cell stiffness problem for both Neumann and Dirichlet boundary conditions.
Moreover, placing boundary points inside the computational domain allows the solu-
tion to be “single-valued” for slender geometries, leading to significant algorithmic
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simplifications for complex geometries. A third advantage of placing boundary points
inside the computational domain is that the boundary conditions are accounted for
via interpolation rather than extrapolation, yielding smaller errors and better stabil-
ity properties. To ensure long-time stability, a small amount of artificial dissipation
is added.

EB-methods have been used to successfully solve a variety of problems from elas-
ticity [29] to incompressible [23] and compressible flows [22]. While this paper will not
review specific applications it will mention noteworthy papers on high-order-accurate
EB-methods for wave equations. Using the integral evolution formula derived by
Alpert, Greengard and Hagstrom [1], Li and Greengard [15] developed high-order
(two to six) discretizations for the constant coefficient wave equation. Li et al. first
computes a provisional solution ignoring the boundary conditions, and then solves
an integral equation in order to correct the provisional solution. Another family of
high-order (two to eight) accurate discretizations based on the same integral evolution
formula was suggested by Wandzura et al. in [27, 28]. In this case a solution is first
obtained by neglecting the boundary conditions and then corrected by a boundary
projection. The discretization of the integral evolution is performed by a least squares
fit constrained by order of accuracy requirements. Wandzura et al. approach the is-
sue of stability in a novel way; if a particular discretization is not stable, they include
more neighboring points until it is.

Lombard and Piraux [16] considers coupled acoustic and elastic waves and derives
interface- and compatibility-conditions on the solution and its derivatives. Special
discretizations near the boundary are generated using a least square procedure. The
method presented in [16] is second order accurate, but has been extended to fourth
order in [17].

Lyon and Bruno [18, 19, 4] proposed a framework based on Fourier-continuation
and alternating direction methods, and devised high order accurate discretizations
for the scalar wave equation and the heat equation. Their method uses Fourier series
representations of non-periodic functions to solve boundary value problems arising in
ADI formulations. High-order-accuracy in time is achieved by Richardson extrapola-
tion.

The proposed method consists of three distinct building blocks: boundary con-
dition enforcement, spatial discretization, and temporal discretization. Each of these
blocks can be modified independently of the others to suit a particular applications.
For example, it would be straight forward to handle variable coefficients or mixed
Neumann and Dirichlet boundary conditions. Our method is therefore more flexible
than the methods suggested in Li et al. and Wandzura et al., which both are designed
solely for the constant coefficient wave equation, or the unconditionally stable FC-AD
solvers in [18], which assume Dirichlet boundary conditions.

The reminder of the paper is outlined as follows. §2 describes the aforementioned
method in detail, including the pre-computations required to enforce the boundary
conditions (§2.1), the temporal (§2.2) and spatial discretizations (§2.3), as well as
various artificial dissipation operators included to ensure long-time stability (§2.4). In
§3, several numerical experiments illustrating the stability and accuracy of the method
are presented. Results are compared to previously published data and applications of
the method to complex geometries are given. A summary and outline of future work
is provided in §4.

2. Description of the method. We consider the wave equation in a two-
dimensional domain (x, y) ∈ Ω in an isotropic medium with a constant speed of
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(a) Exterior problem.
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(b) Interior problem.

Fig. 2.1. Possible setups. Note that the setup (a) must be augmented by boundary conditions
at infinity.

sound (for simplicity set to one)

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
+ f, (x, y) ∈ Ω, t ≥ 0, (2.1)

with initial data

u(x, y, 0) = g0(x, y),
∂u

∂t
(x, y, 0) = g1(x, y), (x, y) ∈ Ω, (2.2)

and boundary conditions of Dirichlet

u(x, y, t) = h
(i)
D (x, y, t), (x, y) ∈ Γl, t ≥ 0, l = 1, . . . , nD, (2.3)

or Neumann type

∂u

∂n
(x, y, t) = h

(i)
N (x, y, t), (x, y) ∈ Γl, t ≥ 0,

l = nD + 1, . . . , nD + nN = ntot. (2.4)

The boundary of the simply connected domain Ω is a collection of ntot smooth curves
Γl. For an exterior problem the curves Γl must be augmented by a boundary condition
at infinity or by a non-reflecting boundary condition. For an interior problem one
curve encloses the ntot − 1 other curves, as shown in Figure 2.1.

2.1. Pre-computations. To find an approximate solution to equations (2.1)-
(2.4) we assume, without restriction, that all curves describing the geometry are
contained inside a rectangular domain (x, y) ∈ Ω = [0, Lx] × [0, Ly] and cover Ω with
the uniform grid (see Figure 2.2)

(xi, yj) = (ih, jh), i = 0, . . . , nx, j = 0, . . . , ny.

The grid size h > 0 and the number of grid points are chosen such that xnx
= Lx and

yny
= Ly. We denote a time dependent grid function by uij(t) = u(xi, yj, t). Time is

discretized on a equidistant grid tn = nk with time-step k > 0, and a time discrete
grid function is denoted un

ij = u(xi, yj, tn).
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(b)

Fig. 2.2. Discretization of the geometry without the mask shown (a) and with the mask shown
(b), dots indicate mij = 1.

The solution to (2.1) is sought only at grid points inside Ω. In a pre-computation
step a mask grid function mi,j is set up such that

mi,j =

{

1, (xi, yj) ∈ Ω,

0, otherwise.

The mask is particularly easy to set up when the boundary of Ω is defined by the
implicit representation φ(x, y)=0. In this case, mi,j simply follows by the sign of
φ(xi, yj). When the boundary curves have a parametric representation, we start by
setting mi,j = −1 at all grid points to indicate that they are undefined. For an
external problem, the outer edges of the grid are defined as inside by setting mi,j = 1
along the lines i = 0, i = nx, j = 0, and j = ny. Correspondingly, for an internal
problem, mi,j = 0 on the outer edges. The mask is then defined in two stages. For
each boundary curve Γl, we first identify all grid cells that are intersected by the
boundary. The grid points at the corners of these grid cells are then marked as either
inside or outside of Ω by setting mij to 1 or 0. After this step, each boundary curve Γl

has a closed polygon of grid points with mi,j = 1 just inside of Ω and a corresponding
closed polygon of grid points with mi,j = 0, just outside of Ω. In the interior of Ω, the
mask can now be defined by “sweeping” line-by-line, i.e., for each horizontal grid line
j = 0, 1, . . . , ny, we start at i = 1 and overwrite any undefined mask values according
to

if mi,j = −1, assign mi,j := mi−1,j , i = 1, 2, . . . , nx.

The same procedure is then repeated for each vertical grid line. An example of a
mask grid function is shown in Figure 2.2.

Boundary conditions are enforced by assigning values to the grid points on the
fringe of the computational domain Ω. These points are denoted boundary points.
A boundary point (xp, yq) is distinguished by the following criterion: mp,q = 1 and
mp+1,q + mp−1,q + mp,q+1 + mp,q−1 < 4, i.e., the boundary point is inside Ω, but
at least one of its nearest neighbors is outside. The boundary points define x- and
y-line segments upon which approximations to the spatial derivatives in (2.1) are
computed. For example, an x-line segment is defined as the collection of grid points
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(xp, yq), p = p1, . . . , p2 with mp,q = 1, starting and ending at boundary points, (xp1 , yq)
and (xp2 , yq), respectively. The boundary points and the line segments are found by
inspecting the mask.

To find approximations to spatial derivatives at all points inside the computational
domain it is sufficient to know all line segments. However, to also account for boundary
conditions some additional pre-computations must be performed to determine the
stencil and coefficients in the formula for assigning solution values at each boundary
point. The procedure for setting up such boundary stencils depends on the type of
boundary conditions and the approach taken to enforce them. For Dirichlet boundary
conditions a one-dimensional line-by-line approach can be used which is described
in § 2.1.1. The advantage of this approach is ease of implementation and a slightly
smaller error constant than the more general approach described in § 2.1.2. The latter
technique, based on interpolation in the direction normal to the boundary, handles
both Dirichlet and Neumann boundary conditions.
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Fig. 2.3. Enforcing Dirichlet boundary conditions by a line by line approach using interior
boundary points (left) or exterior ghost points (right).

2.1.1. Enforcing Dirichlet boundary conditions along grid lines. Let
(xi, yj) be a boundary point associated with a boundary Γl where the solution is
prescribed. To assign a value to uij we introduce a local one-dimensional coordinate
system ξ along the grid line in x passing through (xi, yj) (left image of Figure 2.3),
and construct an interpolating polynomial

Iu(ξ) = uijgij(ξ) +

4∑

ν=1

uνgν(ξ). (2.5)

Here gij(ξ), gν(ξ) are the coefficients in the usual Lagrange polynomial basis. Now,
by equating the interpolant evaluated on the boundary with the right hand side of
the boundary condition

Iu(ξΓ) = hD(xΓ, yΓ, t),

we obtain an explicit expression for uij

uij =
1

gij(ξΓ)

(

hD(xΓ, yΓ, t) −

4∑

ν=1

uνgν(ξΓ)

)

. (2.6)
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Note that once the intersection of the boundary, ξΓ, is found (e.g. by using a root-
finding algorithm such as the secant method) the numbers gij(ξΓ), gν(ξΓ), ν = 1, . . . , 4,
do not depend on time and can be pre-computed and stored. Also note that the trun-
cation error of (2.6) is of order O(h5). For convenience of implementation a fifth
order interpolant is used throughout this paper. For Dirichlet boundary conditions
this yields a fifth-order accurate boundary stencil but for Neumann boundary con-
ditions, which are based on the derivative of the interpolant (2.5), it yields a fourth
order accurate boundary stencil.

The placement of the boundary point is the subtle yet important distinction from
previous papers [8, 9, 10]. In previous work the ghost point is placed outside the
computational domain as pictured in the right image of Figure 2.3. This placement
has the disadvantage that the denominator of (2.6):

gij(ξΓ) =
ξΓ − ξ1

ξij − ξ1

4∏

ν=2

ξΓ − ξν

ξij − ξν

,

may become arbitrary small when ξΓ is close to ξ1 causing small-cell stiffness in an
explicit time stepping procedure.

In contrast, for the approach suggested above, ξΓ ≤ ξij < ξ1 = ξij + h, and thus

|ξΓ − ξ1| ≥ |ξij − ξ1| = h,

so gij(ξΓ) is always bounded away from zero. This separation is an immediate con-
sequence of using a Lagrange polynomial basis, i.e., all zeros of gij(ξ) have ξ ≥ ξ1 =
ξij + h. Hence, placing the boundary point inside the computational domain removes
the small-cell stiffness problem.
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Fig. 2.4. An advantage with placing the boundary points inside the computational domain is
that they will be “single-valued” even when the geometry is slender. When the boundary points
are placed outside the computational domain the situation to the right can occur. To the right the
solution is “multi-valued” and the values uij and u1 are both interior and boundary points.

Another advantage with placing the boundary points inside the computational
domain is that they will be “single-valued” even when the geometry is slender. The
situation illustrated in Figure 2.4 leads to algorithmic difficulties in that two copies of
the solution must be stored in ghost points that also are inside Ω. Such special treat-
ment leads to more complicated implementations, especially in higher dimensions, so
the algorithmic simplification obtained by using “single-valued” boundary points is
important in practical applications.

Finally, when the boundary points are placed inside the computational domain
the formula (2.6) assigns the value to uij by interpolation rather than extrapolation.
In general, interpolation is preferred over extrapolation both for reasons of accuracy
and numerical stability.

Remark 1. Note that for the line-by-line approach each boundary point can be
assigned either from data along a horizontal or vertical line. If the unit boundary
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normal has components n = (n1, n2)
T , we use horizontal grid lines if |n1| > |n2|, and

vertical grid lines in the opposite situation.
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Fig. 2.5. Enforcing the boundary conditions by constructing an interpolating polynomial in the
normal direction. First the values of the solution at the empty circles are used to interpolate (ver-
tically) values, uν , ν = 2, . . . , 4, at the solid circles, then an interpolating polynomial is constructed
along ξ. This polynomial is used to enforce the boundary condition as in the line by line approach.

2.1.2. Enforcing the boundary conditions via interpolation in the nor-

mal direction. To enforce Neumann or Dirichlet boundary conditions in a boundary
point (xi, yj), we find the straight line that passes through the boundary point and is
normal to the boundary curve Γl, see Figure 2.5. Along that line a local coordinate
ξ is introduced. When the angle, θ, between the line and the horizontal grid line
passing through the boundary point is in the interval 0 ≤ θ ≤ π/4, temporary grid
values, u1, . . . , u4, at the four next intersections with vertical grid lines are introduced.
If π/4 ≤ θ ≤ π/2, temporary values are introduced at the corresponding horizontal
intersections (the three other quadrants are simply permutations of the first). The
solution at the temporary grid points is found by interpolating vertical values. For
example, in the situation depicted in Figure 2.5 the values would be given by

uν =

qh∑

q=ql






qh∏

p6=q
p=ql

(νh sin θ − yj+p)

(yj+q − yj+p)




ui+ν j+q.

Here ql and qh are chosen to center the interpolation stencil as well as possible around
the intersection point y = yj + νh sin θ, while only including interior grid points in
the interpolation stencil.

Once the values u1, . . . , u4 are known, the formula (2.5) or its derivative with
respect to ξ is used to find uij for Dirichlet

uij =
1

gij(ξΓ)

(

hD(xΓ, yΓ, t) −
4∑

ν=1

uνgν(ξΓ)

)

, (2.7)

or for Neumann boundary conditions

uij =
1

g′ij(ξΓ)

(

hN (xΓ, yΓ, t) −

4∑

ν=1

uνg′ν(ξΓ)

)

. (2.8)
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As in the line by line approach, the construction of gij(ξ) implies that its roots
are well separated from ξΓ and there will be no small-cell stiffness. For Neumann
boundary conditions, Rolle’s theorem guarantees that the denominator of (2.8) is also
always bounded away from zero.

Remark 2. Temporary values are introduced at intersections between the grid
and the normal in the above description but in the computer implementation of the
boundary stencil only a list containing the location of the circled grid points and the
weights at those points is stored.

2.2. Approximation in time. Having described the pre-computations we now
describe the inner-loop, starting with the temporal discretization. To get a fourth
order accurate approximation in time we use the modified equation [2, 6, 25] approach
based on the Taylor expansion of u(x, y, t) around the present time tn, where for
brevity we suppress the dependence on x and y,

u(tn+1) ≈ u(tn) +
k

1!
ut(tn) +

k2

2!
utt(tn) +

k3

3!
uttt(tn) +

k4

4!
utttt(tn),

u(tn−1) ≈ u(tn) −
k

1!
ut(tn) +

k2

2!
utt(tn) −

k3

3!
uttt(tn) +

k4

4!
utttt(tn).

A fourth order approximation for u(x, y, tn+1) with the local O(k5) truncation
error is obtained by adding the above equations

u(x, y, tn+1) ≈ 2u(x, y, tn) − u(x, y, tn−1) + k2utt(x, y, tn) +
k4

12
utttt(x, y, tn).

The terms utt(x, y, tn) and utttt(x, y, tn) are replaced by spatial derivatives using the
PDE (2.1). In particular, for smooth u satisfying (2.1) the following equality holds

∂2
t utt(x, y, tn) = ∂2

t (∆u(x, y, tn) + f(x, y, tn)) =

∆(∆u(x, y, tn)) + ∆f(x, y, tn) + ftt(x, y, tn). (2.9)

The evaluation of the right-hand-side of (2.9) requires finding approximations of var-
ious derivatives of u. Derivatives can be approximated by using a compact Padé
scheme, as described in detail below, however other one-sided alternatives such as
summation-by-parts approximations [11] are also possible.

Remark 3. Note that the value of u(x, y,−k) is needed to start the computation
and can be obtained by further Taylor expansion and expressed in terms of the initial
data and forcing as

u(x, y,−k) ≈ u(x, y, 0) − kut(x, y, 0)

+
k2

2!
(∆u(x, y, 0) + f(x, y, 0)) −

k3

3!
(∆ut(x, y, 0) + ft(x, y, 0)) . (2.10)

This approximation is sufficiently accurate to achieve a fourth order accurate ap-
proximation of the solution. If highly accurate approximations of the gradient of the
solution are needed, the slow-start procedure described in [8] should be used.

2.3. Approximation of spatial derivatives. Equation (2.9) contains both
second and fourth derivatives of the solution. The temporal discretization is fourth
order accurate and to obtain an overall fourth-order accurate method, second deriva-
tives must be approximated using a fourth-order accurate method. For simplicity of
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implementation, we also approximate the fourth derivatives by the same fourth order
accurate technique, even though it is sufficient to approximate these terms to second
order accuracy [2, 6, 25].

As mentioned above, the value of the solution is assigned at the boundary points
of each line segment and no solution values are extrapolated to outside ghost points.
Thus, an approximation of the derivatives that use only values on each line segment
must be used. For this purpose we use the compact (or Padé) method, see Collatz [5]
or Lele [13], which we outline now.

For a one-dimensional grid function ui defined on a grid xi = ih, i = 0, . . . , N ,
the compact method approximates the second derivative of u(x) by solving a banded
system

(uxx)i +

p
∑

j=1

αj((uxx)i+j + (uxx)i−j) =
1

h2

(

β0u0 +

q
∑

l=1

βl(ui+l + ui−l)

)

,

i = 1, 2, . . . , N − 2, N − 1. (2.11)

The coefficients αj and βl are found by equating the coefficients in front of increasing
powers of h from the Taylor series expansions of u(x) and uxx(x) around xi. Here the
classic fourth order accurate Padé scheme [5] is used with p = 1, q = 1 and

α1 = 1/10, β0 = −12/5, β1 = 6/5.

The one-sided stencils

(uxx)0 + 11(uxx)1 =
1

h2
(13u0 − 27u1 + 15u2 − u3) ,

(uxx)N + 11(uxx)N−1 =
1

h2
(13uN − 27uN−1 + 15uN−2 − uN−3) ,

are used at the boundary points, x0 and xN .
Note that the above boundary closures only provide a third order accurate ap-

proximation of uxx at the boundary points. However, these values are not used by
the time-stepping algorithm, since the boundary points are assigned values to satisfy
the boundary conditions at the end of each time-step.

Remark 4. One drawback to compact schemes is that a system of equations has to
be solved along each line segment. The main objection to solving those systems is not
that it is time consuming (in fact, the most time consuming part is assembling the right
hand side when vi+1, vi, vi−1 are not contiguous in memory), but rather that it is a
global operation which complicates efficient parallelization. A common parallelization
strategy for methods that use compact schemes is to transpose the global solution each
time step. We argue that a better strategy would be to split the system of equations
(2.11) on several CPUs realizing that the solution of the system can be computed
approximately in any point by an explicit method to the same order of accuracy.

Remark 5 (Time step restrictions). On Cartesian grids with no embedded bound-
ary the fourth order modified equation time stepping has the advantage that the time
steps can be larger than when a second order method in time is used, see [2, 6, 25].
Unfortunately this advantage does not to carry over to the case when an embedded
boundary is used. From numerical experiments with various geometries and grid sizes
we have determined that the stability limit for the proposed method is CFL ≈ 0.4. For
comparison, CFL ≈ 0.9 can be used without the embedded boundary.
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2.4. Artificial dissipation for long time simulations. Let DP
xxuij denote the

compact Padé approximation to uxx(xi, yj). Then the above described approximation
of (2.1) can be written

un+1
ij − 2un

ij + un−1
ij

k2
=
(
DP

xx + DP
yy

)
un

ij + fn
ij +

k2

12

(

fn+1
ij − 2fn

ij + fn−1
ij

k2

)

+
k2

12

((
DP

xxDP
xx + 2DP

yyD
P
xx + DP

yyDP
yy

)
un

ij +
(
DP

xx + DP
yy

)
fn

ij

)
,

∀ {i, j : mij = 1} . (2.12)

When used together with an embedded boundary, the scheme (2.12) suffers from
a weak instability and a small amount of artificial damping must be added to stabilize
it. Here, we explore the use of three different damping terms:

[
−d4h

3 (D4x + D4y) + d6h
5 (D6x + D6y) − d8h

7 (D8x + D8y)
]

(

un
ij − un−1

ij

k

)

,

(2.13)
that can be added to the right hand side of (2.12). The damping terms are approxima-

tions of ∂2p

∂x2p
∂u
∂t

, p = 2, 3, 4 built from consistent summation-by-parts approximations

of dp

dxp , denoted by Dpx. The explicit formulas are found in Appendix B, but generally

∂2p

∂x2p

∂u

∂t
≈ DT

pxBpD
T
px

(

un
ij − un−1

ij

k

)

.

The effect of artificial damping on the attainable order of accuracy for summation-
by-parts discretizations on Cartesian grids was studied for first order systems in [21,
20]. It was found that the truncation error caused by the damping is of order p + 1
when the matrix Bp is chosen as the identity matrix. According to the theory in [20]
the d4-damping, which uses B2 = diag(0, 1, 1, . . . , 1, 1, 0), should give second-order
accuracy while the d6- and d8-damping, for which B3 = B4 = I, should give fourth-
and fifth-order accuracy.

In §3 we experimentally study the convergence properties of the proposed method
together with the different damping terms (denoted d4-, d6- or d8-damping). Our find-
ings using an EB-method are not entirely consistent with those of [20]. For example,
we observe that the truncation-order of the damping is different for Dirichlet and Neu-
mann boundary conditions. Also, for the d4-damping we observe only second order
convergence when it is used together with Neumann boundary conditions, but third
order accurate when used together with Dirichlet boundary conditions.

3. Numerical experiments. In this section we present several experiments
demonstrating the properties of the proposed method, as summarized in Algorithm 1.

Some of the results presented in this section will be compared to results presented
in [9, 10] and it should be noted that the notation here differs slightly from that in
[9, 10]. In particular, the integer N as used below, differs by one although the grid
size h is the same as in [9, 10]. Note also that in § 3.1-§ 3.3 we exclusively report
errors in max-norm, but we report rate of convergence as

rate = log2

‖uapprox.(2h) − uexact‖∞
‖uapprox.(h) − uexact‖∞

,

while rate reported in [9, 10] is the fraction of consecutive errors without taking the
logarithm (i.e. 4 here correspond to 16 in [9, 10]).
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Data: Geometry, grid size h, time-step k, final time tend

Result: The solution un
ij at times t = 0, k, . . . , tend

begin
Pre-computations:

Setup mask, mij ;
Setup boundary points;
Setup line segments;
foreach boundary point do

Setup boundary stencil ;
end

Initial data:

Assign initial data u0
ij ;

Assign u−1

ij using (2.10);
Time-stepping loop:

for tn = nk, n = 0, . . . , nt do
Assign values to un

ij in all boundary points using the boundary stencils;
Compute the right hand side of (2.12) and store in F n

ij ;
Compute the damping terms (2.13) and store in Dn

ij ;
Compute un+1

ij = 2un
ij − un−1

ij + k2F n
ij + Dn

ij ;

Cycle un−1
← un, un

← un+1;
end

end

Algorithm 1: Fourth-order-accurate embedded boundary method for the wave equation

3.1. Stability of the method. The purpose of this first experiment is to illus-
trate how we determine the values for d4, d6, d8 that give a stable method. To do this
we choose the forcing, initial and boundary conditions such that the solution is

u(x, y, t) = sin(ω(x − t)) sin(ωy), ω = 4π, (3.1)

and solve (2.1) inside an ellipse with semi-axes xs = 1, ys = 0.75. The geometry is
covered by the grid (xi, yj) = (−1.1 + ih,−1.1+ jh), i, j = 0, . . . , N , h = 2.2/N . The
approximate solution is advanced to time t = 100.0 using k/h ≡ CFL = 0.4, and the
max-norm error is monitored and used as an indicator of stability.

In Figure 3.1 the max-error as a function of time for a run without damping and
for runs with d6 = 0.002 and d6 = 0.0125 is plotted. As is shown, the d6 = 0.0125
simulation is stable. This computation was performed with N = 200 but in order to
span as many scenarios for how the boundary can cut through the grid as possible,
we repeat the procedure for N = 400 and N = 800. If all three grid sizes are stable
for a certain value of the damping, it is accepted as an adequate value. Table 3.1 lists

Table 3.1
Values for the damping parameters that give a stable method.

B.c. method d4 d6 d8

Normal 0.0175 0.0125 0.002
Line-by-line 0.0175 0.0200 0.004

the smallest amounts of d4, d6 and d8 damping that result in a stable method. These
values have been determined by repeating the above experiment, enforcing boundary
conditions either with the line-by-line approach or with the normal direction approach
on grids with N = 200, 400, 800. The values given for the normal direction approach
are suitable for both Neumann and Dirichlet boundary conditions.
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Fig. 3.1. Stabilizing the method using the d6-damping. The lines are: no damping (dashed with
squares), d6 = 0.002 (dotted with circles) and d6 = 0.0125 (solid with plus signs).

Remark 6. The values presented in Table 3.1 have successfully been used for
numerous geometries and configurations. In our experience, suitable values for the
damping can be determined in a single geometry as long as it is done using sufficiently
fine grids. However, all calculations were performed with unit wave propagation speed
and the damping coefficients must be scaled appropriately for other wave speeds.

3.2. Convergence of a trigonometric exact solution. To study the con-
vergence properties of the method for different boundary conditions and damping
options, we continue to solve the problem described in §3.1 where the solution is
given by (3.1). Using the values in Table 3.1 for the different damping terms, the
solution is advanced and the max-error monitored to the end time tend = 2 on grids
with N = 200 and 400.

The results for Dirichlet conditions are displayed in Tables 3.2 and 3.3 and the
results for Neumann conditions are displayed in Table 3.4. The error is reported
at the same time levels as in [9, 10], enabling a direct the comparison with those
second-order and interior fourth-order-accurate methods.

Comparing the results with N = 200 for the Dirichlet case with those in Table 1
and 2 in [9], we see that our compact fourth-order-accurate scheme achieves max-errors
that are about an order of magnitude smaller than those of the interior fourth-order
scheme. Not surprisingly, the improvements compared to the second order scheme
are even larger.

We find that for both approaches to enforce Dirichlet boundary conditions, the
highest order damping, d8, gives the most accurate results, followed by the d6-damping
. The largest errors are obtained when d4-damping is used. The line by line approach is
consistently more accurate than the normal direction approach; this is expected since
there is only a single interpolation in the line-by line approach. For both approaches
the convergence rates are higher than expected for the d4- and d8-damping. When
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Table 3.2
Convergence of the trigonometric exact solution (3.1) enforcing Dirichlet boundary conditions

line-by-line. The results can be compared to Table 1 and 2 in [9].

d4 d6 d8

t 200 400 rate 200 400 rate 200 400 rate
0.33 1.6(-4) 1.0(-5) 3.96 1.6(-4) 1.0(-5) 3.96 4.6(-5) 1.4(-6) 5.04
1.98 2.6(-4) 1.5(-5) 4.11 2.6(-4) 1.5(-5) 4.11 4.8(-5) 1.5(-6) 4.97
2.00 2.7(-4) 1.4(-5) 4.28 2.7(-4) 1.4(-5) 4.28 5.2(-5) 1.6(-6) 5.06

Table 3.3
Convergence of the trigonometric exact solution (3.1) enforcing Dirichlet boundary conditions

by interpolation in the normal direction. The results can be compared to Table 1 and 2 in [9].

d4 d6 d8

t 200 400 rate 200 400 rate 200 400 rate
0.33 2.6(-4) 2.6(-5) 3.31 1.3(-4) 8.6(-6) 3.91 8.7(-5) 3.3(-6) 4.71
1.98 2.8(-4) 2.3(-5) 3.59 2.2(-4) 1.0(-5) 4.43 1.5(-4) 4.3(-6) 5.16
2.00 2.9(-4) 2.2(-5) 3.71 1.8(-4) 8.9(-6) 4.31 1.5(-4) 4.3(-6) 5.16

Table 3.4
Convergence of the trigonometric exact solution (3.1) with Neumann boundary conditions. The

results can be compared to Table 2 in [10].

d4 d6 d8

t 200 400 rate 200 400 rate 200 400 rate
0.33 4.4(-3) 4.0(-4) 3.13 3.5(-3) 2.7(-4) 3.68 3.4(-3) 2.2(-4) 3.94
1.98 5.5(-3) 7.8(-4) 2.81 4.7(-3) 4.4(-4) 3.41 4.7(-3) 3.0(-4) 3.94
2.00 6.3(-3) 5.8(-4) 3.43 5.6(-3) 4.1(-4) 3.76 5.4(-3) 3.4(-4) 3.98

the d8-damping is used the dominant error is likely the 5th order interpolation.
For Neumann boundary conditions the results can be compared to the results in

Table 2 in [10]. Here the compact fourth order accurate scheme yields max-errors that
are approximately five times smaller than those of the interior fourth order scheme
(denoted “predictor-corrector” in [10]).

The observed rates of convergence are lower compared to those observed for the
Dirichlet case and the d8-damping must be used to get a fourth order accurate method.
However it is interesting to note that the size of the errors are roughly comparable
for all damping terms.

3.3. Convergence of inwards and outwards traveling waves. In this sec-
tion we repeat the experiments with inwards and outwards traveling waves described
in § 5.2 and § 5.3 in [9] and in § 8 in [10]. In all examples the wave equation is solved
inside a circle with internal forcing, initial data and boundary forcing chosen so that
the solution becomes a radially propagating wave

u(x, y, t) = u(r, t) = φ(r ± t), (3.2)

where

φ(ξ) =
1

4

(

1 + tanh
ξ − ξ0

ǫ

)(

1 − tanh
ξ − ξ1

ǫ

)

.

In this section all boundary conditions are enforced via interpolation in the normal
direction. We note that for these short-time simulations no artificial dissipation is
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required, but we still use d6-damping for Dirichlet conditions and d8-damping for
Neumann conditions, as we believe they will be needed in many realistic long-time
applications of the method.

3.3.1. Convergence of an inwards and outwards traveling wave with

Dirichlet conditions. First, consider convergence of an inwards traveling wave with

u(x, y, t) = φ(r + t), ξ0 = 2.2, ξ1 = 2.4, ǫ = 0.035,

in a circle |r| ≤ 2 with Dirichlet boundary conditions. The circle is covered by a
rectangle of size 4.2 × 4.2 discretized by a uniform grid with h = 4.2/N .

This problem is more challenging than the trigonometric exact solution as the
wave has a much steeper gradient. The wave starts outside the domain and reaches
its maximum on the boundary around t ≈ 0.3 and then continues to propagate towards
the center of the circle.

Table 3.5
Convergence results for an inwards traveling wave with Dirichlet boundary conditions.

CFL = 0.4 CFL = 0.4 CFL = 0.1 CFL =0.1
t N = 400 N = 800 rate N = 400 N = 800 rate

0.315 8.31(-3) 9.80(-4) 3.08 8.94(-3) 1.16(-3) 2.95
0.525 8.25(-3) 9.77(-4) 3.08 9.13(-3) 1.15(-3) 2.99
1.155 8.96(-3) 6.87(-4) 3.71 1.02(-2) 8.26(-4) 3.62
1.365 9.89(-3) 7.07(-4) 3.81 1.13(-2) 8.72(-4) 3.69

In Table 3.5 results from simulations using two CFL numbers, CFL = 0.4 and
CFL = 0.1, and two discretizations, N = 400 and N = 800, are presented. For
this experiment the errors are comparable with those presented in [9] (Table 3 and
4). This supports the argument made in [9] that for certain problems, consisting of
waves residing mainly in the interior, the interior fourth order correction can be quite
effective.

Note that the rates of convergence are lower than four at the earlier times when the
wave is entering the domain. We expect that the rates of convergence would approach
four if the grid would be refined further, and that the errors for the compact method
would be much smaller than those of the interior fourth order method.

Table 3.6
Convergence results for an outwards traveling wave with Dirichlet boundary conditions.

CFL = 0.4 CFL = 0.4 CFL = 0.1 CFL =0.1
t N = 200 N = 400 rate N = 200 N = 400 rate

0.22 1.39(-3) 8.60(-5) 4.02 1.68(-3) 1.02(-4) 4.05
0.33 1.94(-3) 1.24(-4) 3.96 2.32(-3) 1.46(-4) 3.98
0.66 1.27(-2) 8.15(-4) 3.97 1.39(-2) 9.76(-4) 3.83
0.77 1.16(-2) 7.17(-4) 4.02 1.27(-2) 8.60(-4) 3.88

Next we consider the convergence of an outwards traveling wave with

u(x, y, t) = φ(r − t), ξ0 = 0.2, ξ1 = 0.4, ǫ = 0.035,

in a circle |r| ≤ 1 with Dirichlet boundary conditions. Now the circle is covered by a
rectangle of size 2.2×2.2 discretized with h = 2.2/N . This wave reaches the boundary
around t ≈ 0.5 − 0.6 and exits the domain around t ≈ 0.8 − 0.9.
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The results, presented in Table 3.6, are obtained using the same two CFL numbers
and number of grid points as in the previous experiment. For this experiment the
compact fourth-order-accurate method consistently gives smaller errors (compared
with Tables 5 and 6 in [9]), particularly at later times when the wave has reached the
boundary.

The convergence rates for this experiment appear to be very close to 4 during the
whole process with only a slight decrease at a late time for the smaller CFL number.

3.3.2. Convergence of an outwards traveling wave with Neumann con-

ditions. Finally we perform a convergence study of an outwards traveling wave with

u(x, y, t) = φ(r − t), ξ0 = 0.3, ξ1 = 0.5, ǫ = 0.07,

and Neumann boundary conditions. The circle is now |r| ≤ 1.5 and is covered by a
rectangle of size 3.2 × 3.2 discretized with h = 3.2/N .

Table 3.7
Convergence results for an outwards traveling wave with Neumann boundary conditions.

t N = 200 N = 400 rate
0.50 2.74(-4) 1.78(-5) 3.94
0.75 3.97(-4) 2.56(-5) 3.96
1.00 3.09(-4) 1.02(-4) 4.93
1.25 3.02(-3) 8.59(-5) 5.14

Here we restrict the simulations to a single CFL = 0.4 and two discretizations,
N = 200, N = 400. The results are presented in Table 3.7. The error levels for this
example are much lower than those presented in Table 3 in [10]. In particular, at the
finer discretization and late time errors are approximately 30 times smaller.

3.4. Analytical solution in an annular region. Consider the solution of (2.1)

with f(x, y, t) = 0 in an annular region, (x, y) ∈ ri ≤ r ≡
√

x2 + y2 ≤ ro. In such
a separable geometry the analytical solution (in polar coordinates) is composed of a
superposition of modes

umn(r, θ, t) = Jm(rκmn) cosmθ cosκmnt. (3.3)

Here Jm(z) is the Bessel function of the first kind of order m, (m = 0, 1, . . .) and κmn

is the nth zero of Jm. The function (3.3) is more oscillatory for larger values of m
and n and thus more challenging to solve numerically. Throughout this section we
set m = 7.

In the first experiment we use homogeneous Dirichlet boundary conditions on the
inner and the outer boundary. We set the outer boundary to ro = 1 and choose the
radial normalization such that u(1, θ, t) = 0 at the 7th root, i.e. we set n = 7, for
which we have κ77 = 31.4227941922. The inner boundary is chosen to coincide with
the first zero of J7(r), i.e ri = κ71/κ77 = 11.086370019/κ77 so that the analytical
solution of the problem is

u(x, y, t) = J7(rκ77) cos 7θ cosκ77t.

A plot of the of the initial data can be found in the left image of Figure 3.2. The
solution is advanced for one period in time until t = 2π

κ77
= 0.1999562886971.
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Fig. 3.2. (Left) The function (3.3) with m = n = 7 and the inner and outer boundary chosen
such that u′(ri, θ, t) = u(ro, θ, t) = 0 = 0. (Right) Comparison of used CPU-time as a function of
max-error for the second-order-accurate method, [8], (circles) and the compact fourth order method
(crosses).

Table 3.8
Errors measured in l2- and l∞-norm for the Bessel solution in an annulus with Dirichlet con-

ditions.

N l2-err. d4 rate l2-err. d6 rate l2-err. d8 rate
200 2.99(-4) 2.36(-4) 1.50(-4)
400 3.36(-5) 3.15 1.49(-5) 3.99 5.84(-6) 4.69
800 4.13(-6) 3.03 8.55(-7) 4.12 1.89(-7) 4.95

N l∞-err. d4 rate l∞-err. d6 rate l∞-err. d8 rate
200 6.32(-4) 9.70(-4) 4.30(-4)
400 6.37(-5) 3.31 5.64(-5) 4.11 1.55(-5) 4.79
800 7.95(-6) 3.00 2.69(-6) 4.39 4.31(-7) 5.17

In Table 3.8 the l2- and max-error at the final time are reported for a sequence
of grids and for the three different damping terms. With this solution we see that
the rate of convergence in both norms are approximately three and four for the d4-
and d6-damping, while the rate of convergence is closer to five when d8-damping is
used. This is consistent with the results from the trigonometric solution and suggests
that the errors from the fourth-order-accurate building-blocks of the method (differ-
entiation and time-stepping) are smaller than the fifth-order-accurate building-blocks
(interpolation and the d8-damping).

In the second example we impose homogeneous Neumann boundary conditions on
both the inner and the outer boundary. Again m and n are set to 7, but the location
of the outer and inner boundary are adjusted so that they coincide with the zeros of
J ′

7(r) that are closest to ri and ro from the previous experiment,

ri =
8.57783648971

κ77
, ro =

29.7907485831

κ77
.

The results, reported in Table 3.9, are similar to those observed for the trigono-
metric solution with the exception that the observed rate of convergence more clearly
tends to two for the d4-damping. As the grid is refined, the rate of convergence ap-
proaches some value smaller than four for the d6-damping and some value smaller
than five for the d8-damping.
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Table 3.9
Errors measured in l2- and l∞-norm for the Bessel solution in an annulus with Neumann

boundary conditions.

N l2-err. d4 rate l2-err. d6 rate l2-err. d8 rate
200 1.33(-3) 1.37(-3) 3.43(-3)
400 1.87(-4) 2.84 7.65(-5) 4.00 9.73(-5) 5.14
800 4.62(-5) 2.01 6.87(-6) 3.64 3.22(-6) 4.92

N l∞-err. d4 rate l∞-err. d6 rate l∞-err. d8 rate
200 3.21(-3) 3.65(-3) 1.12(-3)
400 5.19(-4) 2.63 2.28(-4) 4.16 3.50(-5) 5.00
800 1.40(-4) 1.89 1.83(-5) 3.48 1.24(-6) 4.82

In a third example we impose homogeneous Neumann boundary condition on the
inner boundary and homogeneous Dirichlet boundary condition on the outer bound-
ary, i.e. we set ri = 8.57783648971/κ77 and ro = 1.

Table 3.10
Errors measured in l2- and l∞-norm for the Bessel solution in an annulus with Neumann and

Dirichlet boundary conditions.

N l2-err. d4 rate l2-err. d6 rate l2-err. d8 rate
200 4.90(-4) 2.90(-4) 1.40(-4)
400 8.97(-5) 2.45 2.99(-5) 3.28 9.77(-6) 3.84
800 2.15(-5) 2.06 4.44(-6) 2.75 7.96(-7) 3.62
1600 5.05(-6) 2.09 5.83(-7) 2.93 4.05(-8) 4.30

N l∞-err. d4 rate l∞-err. d6 rate l∞-err. d8 rate
200 2.00(-3) 9.40(-4) 4.29(-4)
400 4.26(-4) 2.23 1.09(-4) 3.11 3.49(-5) 3.62
800 1.07(-4) 1.99 1.83(-5) 2.58 3.22(-6) 3.44
1600 2.43(-5) 2.15 2.49(-6) 2.88 1.53(-7) 4.39

In Table 3.10 the results from the mixed boundary condition problem are reported.
As expected, the convergence rates for the mixed problem are dominated by the
Neumann boundary condition and thus approach two, three, and four. Note that
although the rate of convergence measured in both norms is higher for the Neumann
case with d8 than for the mixed case, the l2-errors are almost an order of magnitude
smaller for the mixed case.

As a final experiment, the solution to the mixed problem is computed on a se-
quence of grids and compared to the second order accurate method described in [8].
For both methods we measure the max-error and the CPU time used to advance the
solution by a single period in time. The timing is performed over the inner loop, the
time for pre-computation is negligible and is therefore not included. Both methods
are implemented in FORTRAN 90 and compiled with the Ifort compiler with -O3

optimization and run on a 2GHz Intel Core 2 Duo MacBook.

The results of our comparison, displayed in the right image of Figure 3.2, show
that the second order method is only more efficient for accuracies worse than 0.1%.
Recalling the classic result of Kreiss and Oliger [7], we anticipate that the benefits of
the fourth order method will only increase for longer time simulations.
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3.5. Eigenfrequencies in a membrane. In this experiment we explore an ap-
plication of the proposed method, namely the extraction of resonant eigenfrequencies
of a membrane via time-domain simulations, see e.g [24, 30]. The experiment also
serves as an additional confirmation of the long time stability of the method.

Table 3.11
Values of the parameters for the membrane described by (3.4).

l 1 2 3 4 5 6
xl 0.15 0.5 0.75 0.35 0.2 0.8
yl 0.25 0.6 0.2 0.3 0.7 0.8
wl 0.05 0.39 0.08 0.1 0.02 0.05

The boundary of the membrane is implicitly described by the equation

ϕ(x, y) = 0,

where

ϕ(x, y) = 0.5 −
6∑

l=1

e
−

(x−xl)
2+(y−yl)

2

w2
l , (3.4)

with xl, yl and wl given in Table 3.11. A picture of the membrane can be found in
Figure 3.4.
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Fig. 3.3. (Left) The (normalized) amplitude of the Fourier transform of the recorded signal.
The resonant frequencies show up as spikes. (Right) Responses when the membrane is forced with a
harmonic source with frequencies coinciding with the two lowest resonant frequencies (the solid line
is for fr = 1.125 and the dashed is for fr = 1.72).

To find the eigenfrequencies of the membrane, we force (2.1) by the pulse

f(x, y, t) = 1000(x − 0.5)e−( t−0.1
0.07 )2

−(x−0.5
0.01 )2

−( y−0.5
0.01 )2

.

The membrane is discretized on a grid covering the unit square with 2001 gridpoints in
each direction (i.e. h = 1/2000) and the homogeneous Dirichlet boundary conditions
are enforced using the line-by-line approach. The d6-damping is used to ensure long-
time stability of the solution, which is advanced to t = 400 (2,000,000 time steps).

The solution is recorded at x = 0.4, y = 0.4 and stored in a vector Urec(t) so that
the resonant frequencies can be found by computing the Fourier transform, Ûrec(f),
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Fig. 3.4. (Left) The shape of the membrane. (Middle) The first eigenmode at t = 9.5. The
contours range from 0 to 4.5 with increments of 0.25. (Right) The second eigenmode at t = 9.5.
The contours range from -10 to -1 with increments of 1 (red in the online version) and from 1 to
10 with increments of 1 (blue in the online version).

of Urec(t). A plot displaying the spectrum for the first few frequencies can be found
in Figure 3.3.

Once the frequencies are found, the eigenmodes can be approximated by forcing
the problem with a harmonic source at the resonant frequency. Here we have forced
it with

f(x, y, t) = 200

(

−2
(x − 0.45)

0.052

)

sin(2πfrt) e−
(x−0.45)2+(y−0.4)2

0.052 ,

for fr = 1.125 and fr = 1.72. In Figure 3.3 the response at x = 0.4, y = 0.4 is plotted
as a function of time. As expected, the amplitude grows linearly for a resonant
frequency. Figure 3.4 plots the two first eigenmodes.

We note that this experiment is only meant to serve as an illustration of how
resonant frequencies can be extracted using time-dependent simulations and that there
are modern methods [24, 30] that significantly accelerates the above procedure.

3.6. A radiating unidentified object in free space. In the final experiment
we study the radiation from an unidentified object in free-space. The purpose of this
experiment is to demonstrate the use of non-reflecting boundary conditions together
with the proposed method on a problem where the solution is propagated over many
wavelengths.

The geometry of the unidentified object is defined as the zero contour of

ϕ(x, y) = 0.5 − 1.0e
−

“

x2

0.32
+ y2

0.042

”

− 1.2e
−

„

x2

0.052
+ (y−0.06)2

0.032

«

,

see Figure 3.5. The object is placed in a rectangular domain (x, y) ∈ [−1, 1]2 dis-
cretized on a grid with spacing h = 2/N and N = 2500. On the boundary of the
object, we prescribe Dirichlet data in form of a smoothly started plane wave

u(x, y, t) = (1 − e−5t5) cos(ω(x − t)), (x, y) ∈ Γ, t ≥ 0, ω = 600.

The outer, free-space, boundary condition is modeled by truncating the domain
using a perfectly matched layer (derived in Appendix A)

utt =
∂

∂x

(

ux + σ(x)φ(1)
)

+
∂

∂y

(

uy + σ(y)φ(2)
)

+ σ(x)φ(3) + σ(y)φ(4), (3.5)
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where the auxiliary variables satisfy the equations

φ
(1)
t + (α + σ(x))φ(1) = −ux,

φ
(2)
t + (α + σ(y))φ(2) = −uy,

φ
(3)
t + (α + σ(x))φ(3) = −uxx −

∂

∂x

(

σ(x)φ(1)
)

,

φ
(4)
t + (α + σ(y))φ(8) = −uyy −

∂

∂y

(

σ(y)φ(2)
)

.

(3.6)

The damping profiles σ(z)(z), z = x, y are taken as

σ(z)(z) =
σmax

2

(

2 + tanh

(
z − zpml

δpml

)

− tanh

(
z + zpml

δpml

))

,

with σmax = 15, zpml = 0.75, δpml = 0.01. The complex frequency shift is chosen as
α = 0.05.

Now, as the modified equation approach is used to obtain a high-order-accurate
time discretization we must compute

utttt =
∂2

∂x2
(utt) +

∂2

∂y2
(utt)

+
∂2

∂t2

(
∂

∂x
(σ(x)φ(1)) +

∂

∂y
(σ(y)φ(2)) + σ(x)φ(3) + σ(y)φ(4)

)

︸ ︷︷ ︸

F

.
(3.7)

Once (3.5) is computed, the first two terms in (3.7) can be approximated using the
compact scheme. The third term must be approximated to second-order accuracy. In
this case it is done by first advancing the auxiliary variables using the classic fourth-
order-accurate Adams method [14] to get φ(x, y, tn+1) so Fn+1 can be computed. In
our implementation a compact fourth-order-accurate method is used to approximate
the first derivatives in F . Once Fn+1 is found, a second-order approximation is given
by

∂2

∂t2
Fn ≈

Fn+1 − 2Fn + Fn−1

k2
.

With the PML in place, the solution is advanced to t = 3, at which time most
start-up transients have exited the computational domain and the solution has reached
a time-harmonic state. The line-by-line approach is used to enforce the boundary
conditions and the d6-damping is used to stabilize the scheme.

The results of the simulation can be found in in Figure 3.5. The left image
shows a snapshot of the solution at t = 3. The wavelength, λ, is about 0.01, so the
total domain is ∼ 200λ wide and the unidentified object is ∼ 48λ wide. Note that
only (x, y) ∈ [−0.75, 0.75]2 is displayed in the figure. There are about 13 points per
wavelength and it is noticeable that even with relatively few points per wavelength
the dispersion error does not appear to be significant. The plot demonstrates the
methods capability to simulate wave propagation problems with many wavelengths
as well as complex geometry.
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Fig. 3.5. Left: Snapshot of u(x, y, 3). The pictured domain is (x, y) ∈ [−0.75, 0.75]2. To the
right the quantity I(θ) is plotted.

In order to compute the radiation pattern, the solution is recorded at (x, y) =
(0.5 cos θ, 0, 5 sin θ), θ = 0, dθ, . . . , 2π, dθ = 2π/360 at each time step. In the right
image of Figure 3.5, the quantity

max | log10(I(θ))| − log10(I(θ)),

is plotted. I(θ) is an intensity defined as the time integral of the square of the solution
during one period, T = 2π/ω,

I(θ) =

∫ 2+ 2π
ω

2

|u(0.5 cos θ, 0.5 sin θ, τ)|
2

dτ.

4. Conclusions. In summary, we have derived and demonstrated the applica-
bility of a fourth order accurate embedded boundary method for the wave equation.
In our view, the strength of the method is its high order of accuracy along with its
relative simplicity. Another advantage of our approach is that the method consist of
distinct building blocks whic can easily be adjusted to solve other PDEs.

There are many possible extensions of the method that are worth considering.
These include:

1. Generalize the method to Maxwell’s equations formulated as a system of
second order equations.

2. Adopting the approach to compressible flow problems. This has been suc-
cessfully done in [26, 12] for the earlier second order accurate methods.

3. Raising the order of accuracy further. Raising the order of the compact
method to six is possible by increasing the bandwidth of the linear system
from three to five. Extending the temporal discretization and raising the order
of the boundary stencils should also be straightforward but might require that
new damping terms are considered.

4. Experimentation with other spatial and temporal discretizations, in particular
summation-by-parts finite difference discretizations [11].

Finally, we note that this paper has mainly focused on the description of the
method along with several numerical experiments and largely avoided detailed analysis
of the discretization. The rationale for this emphasis is twofold. First, detailed
analysis of the EB-methods of the type considered here has already been presented
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for the related second order accurate methods in [8, 9, 10]. Analysis of the present
method would largely follow along the lines of [8, 9, 10] but would be algebraically
more involved but probably lead to similar conclusions: there are weak instabilities
that can be suppressed by suitably chosen artificial dissipation. Secondly, an aim
of this paper was to promote the use of embedded boundary methods and we thus
focused on describing the algorithms in sufficient detail to make them replicable by
the interested reader.

Appendix A. PML with modified equation time-stepping. To be able to
treat unbounded domains we enclose the computational domain within a perfectly
matched layer. Following [3] we perform the usual s (s is the Laplace transform
variable dual of t) dependent coordinate stretching and get:

ρs2û =

(

1 −
σ(x)

s + α + σ(x)

)
∂

∂x

((

1 −
σ(x)

s + α + σ(x)

)
∂

∂x
û

)

+

(

1 −
σ(y)

s + α + σ(y)

)
∂

∂y

((

1 −
σ(y)

s + α + σ(y)

)
∂

∂y
û

)

. (A.1)

To localize we introduce the auxiliary variables

φ(1) = −
1

s + α + σ(x)

∂

∂x
û, φ(2) = −

1

s + α + σ(y)

∂

∂y
û,

φ(3) = −
1

s + α + σ(x)

∂

∂x

((

1 −
σ(x)

s + α + σ(x)

)
∂

∂x
û

)

,

φ(4) = −
1

s + α + σ(y)

∂

∂y

((

1 −
σ(y)(y)

s + α + σ(y)

)
∂

∂y
û

)

.

This leads to the perfectly matched layer model (3.5) with auxiliary equations (3.6).

Appendix B. Artificial dissipation. Acting on a one-dimensional grid func-
tion qi, i = 1, . . . , s, the fourth order operator wi = D4qi is

w1 = q1 − 2q2 + q3,

w2 = −2q1 + 5q2 − 4q3 + q4,

wi = 6qi − 4(qi+1 + qi−1 + qi+2 + qi−2), i = 3, . . . , s − 2.

The sixth order operator wi = D6qi is

w1 = −3q1 + 9q2 − 9q3 + 3q4,

w2 = 9q1 − 28q2 + 30q3 − 12q4 + q5,

w3 = −9q1 + 30q2 − 37q3 + 21q4 − 6q5 + q6,

w4 = 3q1 − 12q2 + 21q3 − 22q4 + 15q5 − 6q6 + q7,

wi = −20qi + 15(qi−1 + qi+1) − 6(qi−2 + qi+2) + (qi−3 + qi+3), i = 5, . . . , s − 4.
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The eight order operator wi = D8qi is

w1 = 3q1 − 12q2 + 18q3 − 12q4 + 3q5,

w2 = −12q1 + 49q2 − 76q3 + 54q4 − 16q5 + q6,

w3 = 18q1 − 76q2 + 125q3 − 100q4 + 40q5 − 8q6 + q7,

w4 = −12q1 + 54q2 − 100q3 + 101q4 − 64q5 + 28q6 − 8q7 + q8,

w5 = 3q1 − 16q2 + 40q3 − 64q4 + 72q5 − 56q6 + 28q7 − 8q8 + q9,

wi = 70qi − 56(ui−1 + ui+1) + 28(ui−2 + ui+2) − 8(ui−3 + ui+3) + 1(ui−4 + ui+4),

i = 6, . . . , s − 5.
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